When we connect components together, Kirchoff's laws apply at any instant. So the voltage v(t) across a resistor and capacitor in series is just
vseries(t) = vR(t) + vC(t)
however the addition is complicated because the two are not in phase. The next animation makes this clear: they add to give a new sinusoidal voltage, but the amplitude is less than VmR(t) + VmC(t). Similarly, the AC voltages (amplitude times √2) do not add up. This may seem confusing, so it's worth repeating:
vseries = vR + vC but Vseries < VR + VC.
This should be clear on the animation and the still graphic below: check that the voltages v(t) do add up, and then look at the magnitudes. The amplitudes and the RMS voltages V do not add up in a simple arithmetical way.
Here's where phasor diagrams are going to save us a lot of work. Play the animation again (click play), and look at the projections on the vertical axis. Because we have sinusoidal variation in time, the vertical component (magnitude times the sine of the angle it makes with the x axis) gives us v(t). But the y components of different vectors, and therefore phasors, add up simply: if
rtotal = r1 + r2, then ry total = ry1 + ry2.
So v(t), the sum of the y projections of the component phasors, is just the y projection of the sum of the component phasors. So we can represent the three sinusoidal voltages by their phasors. (While you're looking at it, check the phases. You'll see that the series voltage is behind the current in phase, but the relative phase is somewhere between 0 and 90°, the exact value depending on the size of VR and VC. We'll discuss phase below.)Now let's stop that animation and label the values, which we do in the still figure below. All of the variables (i, vR, vC, vseries) have the same frequency f and the same angular frequency ω, so their phasors rotate together, with the same relative phases. So we can 'freeze' it in time at any instant to do the analysis. The convention I use is that the x axis is the reference direction, and the reference is whatever is common in the circuit. In this series circuit, the current is common. (In a parallel circuit, the voltage is common, so I would make the voltage the horizontal axis.) Be careful to distinguish v and V in this figure!
(Careful readers will note that I'm taking a shortcut in these diagrams: the size of the arrows on the phasor diagrams are drawn the same as the amplitudes on the v(t) graphs. However I am just calling them VR, VC etc, rather than VmR, VmR etc. The reason is that the peak values (VmR etc) are rarely used in talking about AC: we use the RMS values, which are peak values times 0.71. Phasor diagrams in RMS have the same shape as those drawn using amplitudes, but everything is scaled by a factor of 0.71 = 1/√2.)The phasor diagram at right shows us a simple way to calculate the series voltage. The components are in series, so the current is the same in both. The voltage phasors (brown for resistor, blue for capacitor in the convention we've been using) add according to vector or phasor addition, to give the series voltage (the red arrow). By now you don't need to look at v(t), you can go straight from the circuit diagram to the phasor diagram, like this:
From Pythagoras' theorem:
V2mRC = V2mR + V2mC
If we divide this equation by two, and remembering that the RMS value V = Vm/√2, we also get:
Now this looks like Ohm's law again: V is proportional to I. Their ratio is the series impedance, Zseries and so for this series circuit,
Note the frequency dependence of the series impedance ZRC: at low frequencies, the impedance is very large, because the capacitive reactance 1/ωC is large (the capacitor is open circuit for DC). At high frequencies, the capacitive reactance goes to zero (the capacitor doesn't have time to charge up) so the series impedance goes to R. At the angular frequency ω = ωo = 1/RC, the capacitive reactance 1/ωC equals the resistance R. We shall show this characteristic frequency* on all graphs on this page.
* Let's check the units: it should be quick. First, a radian is the ratio of an arc to a radius, so it is a pure number. R is in ohms, and we can use Ohm's law (V = IR) and the definition of current (I = dQ/dt) to write ohm = volt/ampere = volt/(coulomb/second) = volt*second/coulomb. C (charge per unit voltage) is in farads (coulomb/volt), so RC has the units of (volt*second/coulomb)(coulomb/volt) = second. See, it was quick: it only took us 30 ohm.farads!
Remember how, for two resistors in series, you could just add the resistances: Rseries = R1 + R2 to get the resistance of the series combination. That simple result comes about because the two voltages are both in phase with the current, so their phasors are parallel. Because the phasors for reactances are 90° out of phase with the current, the series impedance of a resistor R and a reactance X are given by Pythagoras' law:
Zseries2 = R2 + X2 .
Ohm's law in AC. We can rearrange the equations above to obtain the current flowing in this circuit. Alternatively we can simply use the Ohm's Law analogy and say that I = Vsource/ZRC. Either way we get
where the current goes to zero at DC (capacitor is open circuit) and to V/R at high frequencies (no time to charge the capacitor).So far we have concentrated on the magnitude of the voltage and current. We now derive expressions for their relative phase, so let's look at the phasor diagram again.
From simple trigonometry, the angle by which the current leads the voltage is
However, we shall refer to the angle φ by which the voltage leads the current. The voltage is behind the current because the capacitor takes time to charge up, so φ is negative, ie
φ = -tan-1 (1/ωRC) = tan-1 (1/2πfRC).
At low frequencies, the impedance of the series RC circuit is dominated by the capacitor, so the voltage is 90° behind the current. At high frequencies, the impedance approaches R and the phase difference approaches zero. The frequency dependence of Z and φ are important in the applications of RC circuits. The voltage is mainly across the capacitor at low frequencies, and mainly across the resistor at high frequencies. Of course the two voltages must add up to give the voltage of the source, but they add up as vectors.
V2RC = V2R + V2C.
At the frequency ω = ωo = 1/RC, the phase φ = 45° and the voltage fractions are VR/VRC = VC/VRC = 1/2V1/2 = 0.71.
So, by chosing to look at the voltage across the resistor, you select mainly the high frequencies, across the capacitor, you select low frequencies. This brings us to one of the very important applications of RC circuits, and one which merits its own page: where we use sound files as examples of RC filtering.